Using deep learning to examine the correlation between transportation planning and perceived safety of the built environment

Author:

Hollander Justin B1,Nikolaishvili Giorgi1,Adu-Bredu Alphonsus A1,Situ Minyu1,Bista Shabnam1

Affiliation:

1. Tufts University, USA

Abstract

In this study, we attempt to estimate the effects of various transportation policies on the perceived safety of the built environment. We train a convolutional neural network on a dataset of safety perception scores for Google Street View images taken in Boston, MA . We then apply the trained neural network to a large set of Google Street View images of coordinates in Montreal and Toronto to generate their respective safety perception scores. We estimate probit, logit, and ordinary least squares regression models using our cross-sectional dataset consisting of safety perception scores, as well as transportation policy variables and a set of control variables, by regressing the safety perception scores on the remaining set of variables. We answer our research question by observing the direction, magnitude, and statistical significance of the coefficient estimates associated with the policy variables across all regression models. We studied and cataloged transportation policies planned for over the past 10 years in both cities. We found that those census tracts with the poorest safety scores were the same places where planners focused their transportation investments. The study makes an important contribution to transportation planning methodologies by drawing on the novel data source of Google Street View images, to understand the safety of an area.

Funder

We wish to acknowledge the Research Support Program on Intergovernmental Affairs and Québec Identity

Publisher

SAGE Publications

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Urban Studies,Geography, Planning and Development,Architecture

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3