Simple agents – complex emergent path systems: Agent-based modelling of pedestrian movement

Author:

Ma Lei1ORCID,Brandt Sven Anders1ORCID,Seipel Stefan12ORCID,Ma Ding3ORCID

Affiliation:

1. Department of Computer and Geospatial Sciences, Faculty of Engineering and Sustainable Development, University of Gävle, Gävle, Sweden

2. Division of Visual Information and Interaction, Department of Information Technology, Uppsala University, Uppsala, Sweden

3. Research Institute for Smart Cities, School of Architecture and Urban Planning, Shenzhen University, Shenzhen, China

Abstract

In well-planned open and semi-open urban areas, it is common to observe desire paths on the ground, which shows how pedestrians themselves enhance the walkability and affordance of road systems. To better understand how these paths are formed, we present an agent-based modelling approach that simulates real pedestrian movement to generate complex path systems. By using heterogeneous ground affordance and visit frequency of hotspots as environmental settings and by modelling pedestrians as agents, path systems emerge from collective interactions between agents and their environment. Our model employs two visual parameters, angle and depth of vision, and two guiding principles, global conception and local adaptation. To examine the model’s visual parameters and their effects on the cost-efficiency of the emergent path systems, we conducted a randomly generated simulation and validated the model using desire paths observed in real scenarios. The results show that (1) the angle (found to be limited to a narrow range of 90–120°) has a more significant impact on path patterns than the depth of vision, which aligns with Space Syntax theories that also emphasize the importance of angle for modelling pedestrian movement; (2) the depth of vision is closely related to the scale-invariance of path patterns on different map scales; and (3) the angle has a negative exponential correlation with path efficiency and a positive correlation with path costs. Our proposed model can help urban planners predict or generate cost-efficient path installations in well- and poorly designed urban areas and may inspire further approaches rooted in generative science for future cities.

Publisher

SAGE Publications

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Urban Studies,Geography, Planning and Development,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3