Towards the collaborative development of machine learning techniques in planning support systems – a Sydney example

Author:

Lock Oliver1ORCID,Bain Michael1,Pettit Christopher1ORCID

Affiliation:

1. Faculty of Built Environment, University of New South Wales – Sydney, Australia

Abstract

The rise of the term ‘big data’ has contributed to recent advances in computational analysis techniques, such as machine learning and more broadly, artificial intelligence, which can extract patterns from large, multi-dimensional datasets. In the field of urban planning, it is pertinent to understand both how such techniques can advance our understanding of cities, and how they can be embedded within transparent and effective digital planning tools, known as planning support systems. This research specifically focuses on two related contributions. First, it investigates the role of planning support systems in supporting a participatory data analytics approach through an iterative process of developing and evaluating a planning support system environment. Second, it investigates how specifically machine learning planning support systems can be co-designed by built environment practitioners and stakeholders in this environment to solve a real planning issue in Sydney, Australia. This paper presents the results of applied research undertaken through the design and implementation of four workshops, involving 57 participants who were involved in a co-design process. The research follows a mixed-methods approach, studying a wide array of measures related to participatory analytics, task load, perceived added value, recordings and observations. The results highlight recommendations regarding the design and evaluation of planning support system environments for co-design and their coupling with machine learning techniques. It was found that consistency and transparency are highly valued and central to the design of a planning support system in this context. General attitudes towards machine learning and artificial intelligence as techniques for planners and developers were positive, as they were seen as both potentially transformative but also as simply another technique to assist with workflows. Some conceptual challenges were encountered driven by practitioners' simultaneous need for concrete scenarios for accurate predictions, paired with a desire for predictions to drive the development of these scenarios. Insights from this work can inform future planning support system evaluation and co-design studies, in particular those aiming to support democracy enhancement, greater inclusion and more efficient resource allocation through a participatory analytics approach.

Publisher

SAGE Publications

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Urban Studies,Geography, Planning and Development,Architecture

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3