Modelled impacts of a potential light emitting diode lighting system conversion and the influence of an extremely polluted atmosphere in Mexico City

Author:

Lamphar H12,Wallner S32ORCID,Kocifaj M2

Affiliation:

1. The Center for Research in Geography and Geomatics Ing. Jorge L. Tamayo (CentroGeo), Mexico; ICA, Slovak Academy of Sciences, Slovak Republic

2. Slovak Academy of Sciences, Slovak Republic; Comenius University, Slovak Republic

3. ICA, Slovak Academy of Sciences, Slovak Republic; University of Vienna, Austria

Abstract

Currently, many cities worldwide are changing current existing and mostly outdated lighting situation systems from inefficient lamps to light emitting diodes (LEDs). Providing the opportunity of energy savings, they can help in preventing influences to the night sky and furthermore issues for human health, wildlife and environment. This work simulates a potential LED conversion for the megacity of Mexico City and investigates impacts to conservation areas. Modelled for the whole visible spectrum, the analysis places special focus on the effects of applying various colour temperatures. Additionally, a highly polluted atmosphere was included as theoretical model, something applying to megacities in particular, to see impacts on skyglow of such an environmental contingency. In general, results show that the night sky brightness increases significantly with increasing colour temperature of LEDs if the lumen output is kept constant. It is shown that a potential conversion requires a thorough adjustment, otherwise negative impacts on environment and health might rise. Furthermore, an increased aerosol optical thickness ends in producing more diffuse light, identifying a major concern for the environment. The results obtained in this paper may be a strong motivation to ascertain measurements conducted in other large urban areas correlated to the computational results presented here.

Funder

Slovak National Grant Agency

Agentúra na Podporu Výskumu a Vývoja

Publisher

SAGE Publications

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Urban Studies,Geography, Planning and Development,Architecture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3