Methods for neighbourhood Mapping, boundary agreement

Author:

Dalton Nicholas S1ORCID,Hurrell Mark1

Affiliation:

1. Department of CIS, University of Northumbria at Newcastle, Newcastle Upon Tyne, UK

Abstract

Any analytical study of a neighbourhood must begin with an accurate definition of the geographic region that contains it. For a long time, there has been an interest in taking surveys of neighbourhood extents, but this can generate numerous haphazardly sketched polygons. Researchers typically face the challenges of using boundary polygons reported by each participant and unifying these polygons into one representative boundary. Over the years, several researchers have reported their findings on methods for unifying these boundaries. We present and compare the following five methods (two existing, one modified and two new): Dalton radial average, Bae–Montello average, a vectorised version of the Bae–Montello raster grid overlay, a vectorised derivative inspired by the Wenhao kernel density axis method maximum kernel density axis and a new k-medians clustering method. A crowd-sourced evaluation method is presented. N=42 raters ranked the five methods of aggregating real boundary data based on the results from three study areas. We found that the boundary aggregation method derived from the Bae–Montello grid, closely followed by the Dalton radial average method, provided the most reasonable results. This paper outlines the reasons for these results and illustrates how this knowledge may point to the ability of future algorithms to improve the presented methods. The paper ends with a recommendation that neighbourhood boundaries should utilise boundaries derived from the Bae–Montello raster grid overlay method and/or the Dalton radial average method to facilitate comparisons in the field.

Publisher

SAGE Publications

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Urban Studies,Geography, Planning and Development,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3