Coupling data science with community crowdsourcing for urban renewal policy analysis: An evaluation of Atlanta’s Anti-Displacement Tax Fund

Author:

Auerbach Jeremy1ORCID,Blackburn Christopher2,Barton Hayley3,Meng Amanda2,Zegura Ellen2

Affiliation:

1. Colorado State University, USA

2. Georgia Institute of Technology, USA

3. Duke University, USA

Abstract

We estimate the cost and impact of a proposed anti-displacement program in the Westside of Atlanta (GA) with data science and machine learning techniques. This program intends to fully subsidize property tax increases for eligible residents of neighborhoods where there are two major urban renewal projects underway, a stadium and a multi-use trail. We first estimate household-level income eligibility for the program with data science and machine learning approaches applied to publicly available household-level data. We then forecast future property appreciation due to urban renewal projects using random forests with historic tax assessment data. Combining these projections with household-level eligibility, we estimate the costs of the program for different eligibility scenarios. We find that our household-level data and machine learning techniques result in fewer eligible homeowners but significantly larger program costs, due to higher property appreciation rates than the original analysis, which was based on census and city-level data. Our methods have limitations, namely incomplete data sets, the accuracy of representative income samples, the availability of characteristic training set data for the property tax appreciation model, and challenges in validating the model results. The eligibility estimates and property appreciation forecasts we generated were also incorporated into an interactive tool for residents to determine program eligibility and view their expected increases in home values. Community residents have been involved with this work and provided greater transparency, accountability, and impact of the proposed program. Data collected from residents can also correct and update the information, which would increase the accuracy of the program estimates and validate the modeling, leading to a novel application of community-driven data science.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Urban Studies,Geography, Planning and Development,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3