A hybrid modeling approach considering spatial heterogeneity and nonlinearity to discover the transition rules of urban cellular automata models

Author:

Zeng Haoran1ORCID,Zhang Bin2ORCID,Wang Haijun1

Affiliation:

1. School of Resource and Environmental Sciences, Wuhan University, Wuhan, China

2. School of Public Administration, China University of Geosciences, Wuhan, China

Abstract

Urban sprawl is a typical geographic dynamic process with spatial heterogeneity and nonlinearity. However, current studies usually focus on only one of them to extract urban sprawl mechanisms and build cellular automata (CA) models. In the current work, the urban CA transition rules are derived by a geographically weighted artificial neural network (GWANN), which can discover the driving mechanism of urban sprawl by considering both spatial heterogeneity and nonlinearity. Taking the urban sprawl of Wuhan and Beijing during 2000–2020 as examples, the advantages of GWANN in deriving transition rules are investigated by comparing it with logistic regression (LR), geographically weighted logistic regression (GWLR), and artificial neural network (ANN). Furthermore, the simulation performance of CA models based on LR, GWLR, ANN, and GWANN is compared and analyzed from the aspects of global and regional simulation accuracy and the morphology of simulated urban patches. The results show that GWANN has better fitting and simulation performance, indicating the validity and necessity of coupling spatial heterogeneity and nonlinearity to establish transition rules. This study is a novel exploration that contributes to deriving CA transition rules through a hybrid modeling approach that couples statistical models with learning models.

Funder

National Natural Science Foundation of China

“CUG Scholar” Scientific Research Funds at China University of Geosciences

Publisher

SAGE Publications

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Urban Studies,Geography, Planning and Development,Architecture

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3