Extracting real estate values of rental apartment floor plans using graph convolutional networks

Author:

Takizawa Atsushi1ORCID

Affiliation:

1. Osaka Metropolitan University, Japan

Abstract

Access graphs that indicate adjacency relationships from the perspective of flow lines of rooms are extracted automatically from a large number of floor plan images of a family-oriented rental apartment complex in Osaka Prefecture, Japan, based on a recently proposed access graph extraction method with slight modifications. We define and implement a graph convolutional network (GCN) for access graphs and propose a model to estimate the real estate value of access graphs as the floor plan value. The model, which includes the floor plan value and hedonic method using other general explanatory variables, is used to estimate rents, and their estimation accuracies are compared. In addition, the features of the floor plan that explain the rent are analyzed from the learned convolution network. The results show that the proposed method significantly improves the accuracy of rent estimation compared to that of conventional models, and it is possible to understand the specific spatial configuration rules that influence the value of a floor plan by analyzing the learned GCN.

Funder

Japan Society for the Promotion of Science

Publisher

SAGE Publications

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Urban Studies,Geography, Planning and Development,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3