Key determinants of particulate matter 2.5 concentrations in urban environments with scenario analysis

Author:

Chun Bumseok1,Choi Kwangyul2,Pan Qisheng3

Affiliation:

1. Texas Southern University, Houston, TX, USA

2. University of Oklahoma, Norman, OK, USA

3. University of Texas at Arlington, Arlington, TX, USA

Abstract

Particulate matter (PM) 2.5 generates a variety of negative effects on health, such as heart and lung disease, asthma, and respiratory symptoms. The pollutants in the atmosphere primarily result from human activities, and, in urban settings, increases in traffic volume and higher building density can elevate the level of PM2.5. Building on previous research, this study primarily focuses on two highly developed urban areas in the Texas Triangle region: Travis County in the Austin Metropolitan Area and Harris County in the Greater Houston Area. It explores different types of urban features, such as urban structures, land use/land cover, traffic volume, and distance from roads, that affect the PM2.5 concentration in urban environments at the local scale. Throughout this study, we use various research methods, including geographically weighted regression, to estimate the PM2.5 concentrations at local scales, 3D city models to derive urban characteristics, and the random forest algorithm to predict the effects of urban features on PM2.5 concentrations. Our findings suggest that developed land use, tall buildings in dense areas, and major traffic networks are the key contributors to PM2.5. However, we also find that tree canopy cover can significantly reduce PM2.5 concentrations.

Funder

U.S. Department of Transportation

Publisher

SAGE Publications

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Urban Studies,Geography, Planning and Development,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3