Dynamic Fracture Toughness of Cellulose-Fiber-Reinforced Polypropylene: Preliminary Investigation of Microstructural Effects

Author:

Clemons Craig M.1,Caulfield Daniel F.1,Giacomin A. Jeffrey2

Affiliation:

1. USDA Forest Service, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53705-2398

2. Mechanical Engineering Department and Rheology Research Center, University of Wisconsin-Madison, 309 Mechanical Engineering Bldg., 1513 University Ave., Madison, WI 53706-1572

Abstract

In this study, the microstructure of injection-molded polypropylene reinforced with cellulose fiber was investigated. Scanning electron microscopy of the fracture surfaces and X-ray diffraction were used to investigate fiber orientation. The polypropylene matrix was removed by solvent extraction, and the lengths of the residual fibers were optically determined. Fiber lengths were reduced by one-half when compounded in a high-intensity thermokinetic mixer and then injection molded. At low fiber contents, there is little fiber orientation; at high fiber contents, a layered structure arises. To better understand mechanisms of fracture under impact loading, dynamic fracture analysis was performed based on linear elastic fracture mechanics. Dynamic critical energy release rates and dynamic critical stress intensity factors were deduced from instrumented Charpy impact test measurements. Dynamic fracture toughness increased with cellulose content and with orientation of fibers perpendicular to the crack direction. A preliminary evaluation of a simple model relating the microstructure to the dynamic fracture toughness shows promise, but further work is needed to assess its validity.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3