Effect of injection parameters on the thermal, mechanical and thermomechanical properties of polycaprolactone (PCL)

Author:

Luna Carlos Bruno Barreto1ORCID,Siqueira Danilo Diniz1,Ferreira Eduardo da Silva Barbosa1,Araújo Edcleide Maria1,Wellen Renate Maria Ramos2

Affiliation:

1. Academic Unit of Materials Engineering, Federal University of Campina Grande, Campina Grande - Paraíba, Brazil

2. Department of Materials Engineering, Federal University of Paraíba, Cidade Universitária, João Pessoa, PB, Brazil

Abstract

In this work, an experimental design was applied in the injection molding process of polycaprolactone (PCL), aiming to evaluate the mechanical properties (impact strength, tensile strength and Shore D Hardness), thermal (differential scanning calorimetry (DSC)) and thermomechanical (heat deflection temperature (HDT)), in PCL injected specimens. A type 2n planning was applied, with n = 3 and central point, having the input factors: processing temperature profile, mold temperature and injection flow. The results showed that the DSC curves presented a complex mechanism during crystallization, suggesting that depending on the processing conditions a high degree of crystallinity can be obtained. When using a higher processing temperature and a higher injection flow, there is an increase in the mass of the PCL parts. The impact strength is more expressive when a higher injection flow and a lower processing temperature are applied, reaching values around 260 J/m. The mold temperature impairs the elongation at the break of the PCL, while the elastic modulus was governed by the degree of crystallinity. A deleterious effect on HDT was observed with increased injection flow, suggesting that this parameter negatively affects thermomechanical resistance. The use of experimental design in the processing of PCL is important, since it is possible to optimize properties with the ideal conditions of injection molding.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3