Additive manufacturing and investigation of shape memory properties of polylactic acid/thermoplastic polyurethane blend

Author:

Abidaryan Sara12,Akhoundi Behnam2ORCID,Hajami Faramarz3

Affiliation:

1. Advanced Additive Manufacturing Laboratory, Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran

2. Department of Mechanical Engineering, Sirjan University of Technology, Sirjan, Iran

3. Faculty of Mechanical, Electrical, and Industrial Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran

Abstract

The fused filament fabrication (FFF) process is one of the most widely used additive manufacturing (AM) methods in producing parts with relatively complex geometry due to its low cost and high capability. Using this blend along with the 3D printing method to make complex shapes can have a high potential in medical applications such as stents, so the goal of the following study is to investigate the shape memory properties of Polylactic Acid/Thermoplastic polyurethane (PLA/TPU) blend. The printed samples with 100/0, 80/20, and 60/40 PLA/TPU composition ratios were comprehensively evaluated based on their structural, thermal, and shape memory properties. A differential scanning calorimetry (DSC) test was conducted to determine the glass transition temperatures and crystallization temperature zone of the blends. A full factorial design of experiments was employed to investigate the effect of three variables called composition ratio, printing angle, and filling percentage on shape memory behavior. Using the three-point flexural test, the shape memory behavior of printed samples with composition ratios 100/0,80/20, 60/40, and filling percentages of 50, 75, and 100%, along with printing angles of zero, ±45, and 90°, was evaluated and measured. The annealing process increased the force required to change the shape and crystallization percentage, such that not being processed, no crystals were observed in the X-ray diffraction (XRD) analysis of the samples, while after being annealed, up to 38% of the crystals were formed. Increasing the percentage of TPU and temperature led to the softening of the samples, reducing the strength and elastic modulus, as well. Enhancing the percentage of TPU also decreases the hydrophilic properties of the samples. The results showed that the best shape memory performance is related to the 20 weight percentage of TPU composition, and the maximum recovery force ratio belongs to the sample with such a composition, zero printing angles, and 75% filling percentage, which equals 81.56%, while it equals 74% using compression molding (CM) in all three production blends.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3