Mechanical properties of silicone rubber under high loadings of alumina trihydrate filler

Author:

Ansorge Samuel12,Papailiou Konstantin3

Affiliation:

1. Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH Zurich), Switzerland

2. Pfisterer Sefag AG, Malters, Switzerland

3. Hellbühlstrasse 37, Malters, Switzerland

Abstract

It is known that Young’s modulus of elastomers increase strongly due to high filler loadings, which is critical for practical applications and processing. An experimental study was performed in order to investigate the mechanical properties of silicone rubber, which was highly filled with alumina trihydrate (ATH) under uniaxial tensile tests. Different sizes of ATH particles having different surface conditions were used. The composites were prepared in a Z-blade mixer, and the particles were partly in situ modified. In preliminary investigations, the correct amount of silane for the in situ modification was determined and the effect of the mixing time on the mechanical properties of the cured rubber was studied. Long mixing times show generally a decrease in the modulus. This is explained by the increasing formation of bound rubber. A substantial dependence of the particle size and particle surface modification on the Young’s modulus was found. This effect can be simulated using a model based on a stiff particle surrounded by a soft shell, which has a higher modulus than the polymer. Smaller particles show a stronger increase of the modulus than larger ones, which is due to (1) higher volume of interphase area and (2) shorter distance between the particles increasing the modulus of the interphase.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3