Reduced graphene oxide / epoxy nanocomposites with enhanced dielectric, mechanical, thermomechanical and thermal properties

Author:

Akkalamattam Maitheenkunju Rahnamol1,Gopalakrishnan Jayalatha12ORCID

Affiliation:

1. Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala, India

2. Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kochi, Kerala, India

Abstract

Epoxy/conducting filler nanocomposites with high dielectric performance have emanated as a promising material in electronic and electrical industry. In this work, a facile and low-cost method, that is, thermal reduction at 400°C was adopted for the preparation of reduced graphene oxide (rGO) from graphene oxide (GO). The rGO was characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, Field emission scanning electron microscopy and Transmission electron microscopy. Epoxy nanocomposite presented a dielectric permittivity of 35 at 1.8 vol.% loading of rGO (Ep/G-1.8) at 103 Hz, which was 5 times higher than neat epoxy and with a low dielectric loss. With the addition of 0.3 vol.% of rGO (Ep/G-0.3), the mechanical properties such as tensile strength, Young’s modulus and impact strength were enhanced by 34%, 56% and 54%, respectively. Dynamic mechanical analysis (DMA) revealed that in comparison to epoxy, there was a tremendous enhancement of storage modulus (55%) and the glass transition temperature (Tg) exhibited a remarkable shift of 39°C towards higher temperature for Ep/G-0.3. Cross-link density and coefficient of effectiveness (C-factor) estimated from the storage modulus improved significantlyfor Ep/G-0.3. Theoretical modelling was done on the viscoelastic properties of the composites. SEM studies indicated the uniform dispersion of rGO throughout in the epoxy matrix. Thermogravimetric analysis revealed that inclusion of rGO improved the thermal stability of epoxy nanocomposites.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3