Affiliation:
1. Department of Chemistry, Faculty of Sciences, M’hamed Bougara University, Algeria
2. Laboratory of Biogeochemistry of Desert Environments, Department of Chemistry, Faculty of Sciences,Kasdi Merbah University, Algeria
Abstract
In the present study, full factorial designs were used to model and optimize the mechanical properties of PVC-based formulations constituting three-core power cables: sheathing, insulation and stuffing, while respecting the standards in force, and aiming for a minimum cost. The effects of 4 parameters: plasticizer content (X1), filler content (X2), stabilizing agent content (X3) and the kind of plasticizer were investigated on the following properties: Density (D), Hardness (H), Elongation at break (EB) and Fracture resistance (FR), as well as the price (DA/kg of formulation). The desirability-based optimization gave the following values: EB = 214.72%, FR = 19.94 MPa and Price = 116.71 DA/kg for the sheathing; EB = 198.11%, FR = 4.38 MPa and Price = 61.73 DA/kg for the stuffing; EB = 207.84%, FR = 19.35 MPa and Price = 102.73 DA/kg for the insulation. The study revealed also that the order of significance of the effects on the mechanical properties was: X1>X2>X3 and that the use of cheapest plasticizer did not affect greatly the mechanical properties.
Subject
Materials Chemistry,Polymers and Plastics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献