Affiliation:
1. Defence Institute of Advanced Technology, Pune, India
2. Defence Research and Development Organization, New Delhi, India
Abstract
This research paper proposes a unique way to safeguard delicate systems on submerged platforms from the undesirable effects of underwater explosion shock loads. The underwater detonation of an explosive charge and mines produce devastating underwater shocks against underwater platforms. Shock load developed underwater has been analyzed, and a shock response spectrum (SRS) approach to compute shock peak responses has been adopted. SRS shock absorption frequency satisfies requirements for both shock absorption and delicate systems. The shock load was reduced to 2g by altering the delicate system stiffness and damping properties. The analytical model for a single DOF system was formulated, and simulation was carried out using ANSYS solver. The stiffness has been spread across various points along the length of the delicate system, allowing it to undergo translational oscillations when subjected to shock loads. This research paper presents an innovative design approach for a shock absorption system intended for underwater sensitive objects, emphasizing simplicity, distinctiveness, compactness, reliability, and electromagnetic compatibility. Experimental testing validated the shock absorption design on the prototype. Shock testing determined the absorber’s maximum displacement and sensitive object acceleration.
Reference24 articles.
1. Harris CM. Shock & vibration handbook. 5th ed. New York, NY: McGraw Hill International Book Company.
2. Charles EC. Vibration & shock absorption. New York: John Wiley & Sons, Inc.