A novel design of compact elastomer shock absorption system to protect sensitive objects from underwater shock for naval application

Author:

Hipparkar Dattatraya R1ORCID,Chandel Sunil1,Harshe Rahul2

Affiliation:

1. Defence Institute of Advanced Technology, Pune, India

2. Defence Research and Development Organization, New Delhi, India

Abstract

This research paper proposes a unique way to safeguard delicate systems on submerged platforms from the undesirable effects of underwater explosion shock loads. The underwater detonation of an explosive charge and mines produce devastating underwater shocks against underwater platforms. Shock load developed underwater has been analyzed, and a shock response spectrum (SRS) approach to compute shock peak responses has been adopted. SRS shock absorption frequency satisfies requirements for both shock absorption and delicate systems. The shock load was reduced to 2g by altering the delicate system stiffness and damping properties. The analytical model for a single DOF system was formulated, and simulation was carried out using ANSYS solver. The stiffness has been spread across various points along the length of the delicate system, allowing it to undergo translational oscillations when subjected to shock loads. This research paper presents an innovative design approach for a shock absorption system intended for underwater sensitive objects, emphasizing simplicity, distinctiveness, compactness, reliability, and electromagnetic compatibility. Experimental testing validated the shock absorption design on the prototype. Shock testing determined the absorber’s maximum displacement and sensitive object acceleration.

Publisher

SAGE Publications

Reference24 articles.

1. Harris CM. Shock & vibration handbook. 5th ed. New York, NY: McGraw Hill International Book Company.

2. Charles EC. Vibration & shock absorption. New York: John Wiley & Sons, Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3