The effect of plasticization on the properties of poly(urethaneureas) based on oligoether diols, 2,4-toluenediisocyanate, and aromatic diamines

Author:

Tereshatov Vasiliy1,Makarova Marina1,Senichev Valeriy1,Vnutskikh Zhanna1,Oshchepkova Tamara1,Borisova Irina1

Affiliation:

1. Institute of Technical Chemistry of Perm Federal Research Center, Perm, Russian Federation

Abstract

Segmented poly(urethaneureas) (SPUUs) modified with low glass transition temperature chemically inert liquids are of interest due to their controllable properties and potential applications under various environmental conditions. Investigation into the influence of plasticizers on the properties of SPUUs based on oligotetramethyleneoxide diol (polytetramethyleneoxide), oligopropyleneoxide diol (polypropyleneoxide), 2,4-toluenediisocyanate, Ethacure-300, and methylene-bis- o-chloroaniline was conducted. Partial crystallization of polytetramethyleneoxide segments was identified during cooling of some SPUU samples plasticized by di-(2-ethylhexyl)sebacate (DEHS) and tributyl phosphate. Polypropyleneoxide segments did not crystallize under the same conditions. A low crystallization temperature for the amorphous component of the polymer matrix in SPUU (−100°C to 103°C) was attained at a molecular mass ( Mn) of soft segments equal to 2000 g mol−1 and a DEHS concentration equal to 40–45%. A relationship between the mechanical properties of plasticized SPUU, microphase segregation, and dilution of the polymer matrix was found. For the first time, the effect of dilution with plasticizer on the strength of elastomers was considered. The plasticization effect on the mechanical properties of SPUU was investigated in the temperature diapason from 50°C to −70°C. The results of these investigations can be used in various technologies including the design of SPUUs with high elastic properties at temperatures as low as −70°C, typical of extreme conditions of the Arctic climate.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3