Experimental evaluation of utilizing synthetic continuous fiber reinforcements for thermoplastics as an alternative to steel-based analogs

Author:

Syed Nabeel Ahmed1ORCID,Utkarsh Utkarsh1,Tariq Muhammad1,Behravesh Amir H1,Guo Qingping2,Rizvi Ghaus1,Pop-Iliev Remon1

Affiliation:

1. Department of Mechanical and Manufacturing Engineering, Ontario Tech University, Oshawa, ON, Canada

2. EHC Global Inc, Oshawa, ON, Canada

Abstract

Despite being inexpensive and robust, steel cord reinforcements are often prone to pose risks to user health and safety in some industrial applications such as escalator handrails and rubber conveyor belts. Steel cords can reduce the overall stability and performance of the application over time due to their inherent creep accompanied by cyclic thermal expansion and contraction. In this context, this research focuses on replacing steel cords in some critical thermoplastic polyurethane (TPU) composite applications with continuous sustainable alternate synthetic fibers that possess high specific strength (e.g. carbon, glass, and Kevlar fibers). The first part of this research characterizes the effect of epoxy coating on synthetic fibers alone by studying their mechanical properties before and after modification, whereas the second half of the research involves reinforcing a TPU matrix with raw and epoxy-coated synthetic fibers to fabricate fiber-reinforced composites by compression molding. The effect of the curing temperature of epoxy on the end performance of the manufactured specimen was also tested. An in-depth analysis of mechanical and morphological studies showed that, at almost the same volume fraction of fibers, the TPU reinforced composites with modified carbon fibers showed higher load-bearing capacities than steel cord-based analogs. Conversely, a wide variety of other relevant industrial and commercial applications can potentially draw significant benefits by implementing these modified carbon/TPU composites instead of steel cords.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3