Structure and properties of ultrasonically extruded SBR/BR blends and prepared compounds and vulcanizates with various fillers

Author:

Liang Tian1,Isayev Avraam I1

Affiliation:

1. Department of Polymer Engineering, The University of Akron, Akron, OH, USA

Abstract

The ultrasonic treatment of styrene-butadiene rubber (SBR)/butadiene rubber (BR) 50/50 blend in single screw extruder was carried out at amplitudes up to 10 μm. The untreated and treated SBR/BR blends were mixed with carbon black (CB), silica, and silica/silane to prepare 50/50/60 compounds. It was found that ultrasonic power consumption increased and die pressure reduced with the increase of ultrasonic amplitude, indicating a potential to increase extrusion output rate with the aid of ultrasound. Molecular weight of blends treated at 3.5 μm increased, and high molecular weight tail was observed at 5, 7.5, and 10 μm. Solvent extraction experiments showed the formation of gel in blends treated at 7.5 and 10 μm. No gel was observed in blends untreated and treated at 3.5 and 5 μm. SBR/BR/silica vulcanizates prepared from the blend treated at 5 μm showed the reduced loss tangent at −30°C, 0°C, and 60°C, predicting a lower snow, wet traction, and rolling resistance. Reduced loss tangent after ultrasonic treatment was a result of reduced filler flocculation. The tensile strength and elongation at break of all treated SBR/BR and SBR/BR/CB vulcanizates treated at 3.5 and 5 μm increased. Modulus 100% elongation (M100) of vulcanizates prepared from SBR/BR/silica treated at 5 μm was also increased.

Funder

CenTiRe I/UCRC

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3