Reclaiming of waste guayule natural rubber vulcanizate—reclaim rubber for green tire applications: An approach for sustainable development

Author:

Ghorai Soumyajit1,Mondal Dipankar2,Dhanania Sawar3,Chattopadhyay Santanu3,Roy Madhusudan4,De Debapriya1

Affiliation:

1. Department of Chemistry, MCKV Institute of Engineering, Howrah, West Bengal, India

2. Department of Polymer Science and Technology, University College of Science and Technology, University of Calcutta, Kolkata, West Bengal, India

3. Rubber Technology Centre, Indian Institute of Technology, Kharagpur, West Bengal, India

4. Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India

Abstract

This article illustrates the reclaiming of guayule natural rubber (GNR) vulcanizate by bis[3-(triethoxysilyl)propyl] tetrasulfide (TESPT), and as-grown reclaim rubber facilitates the silica dispersion in GNR product application without adding any coupling agent. This article deals with the performance evaluation of silica-filled revulcanizates with promising application in green tire. The extent of reclaiming was monitored through the measurement of sol content, cross-link density, Mooney viscosity, and degree of reclaiming. The differential scanning calorimetry study was carried out to evaluate the fraction of immobilized polymer chains and its dependence on cross-link density of the vulcanizates. The Fourier transform infrared study and also sulfur analysis independently indicate the attachment of the fragmented TESPT with the polymer chain and cross-link bonds. The study of mechanical properties clearly shows that in revulcanized GNR, the optimum property is achieved when reclaiming time is set for 40 min. The effect of reclaiming time on dynamic mechanical behavior such as storage modulus and loss tangent was studied. The scanning electron microscopy studies show the coherency and homogeneity of silica-filled revulcanize rubber with reclaiming time.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3