Effects of graphene oxide concentration and frequency on morphology, mechanical and rheological studies of fluoroelastomer nanocomposites

Author:

Kumar Pushpendra1,Penta Santhosh1,Mahapatra Shyama Prasad1ORCID

Affiliation:

1. Department of Chemistry, National Institute of Technology Raipur, Raipur, India

Abstract

Fluoroelastomer nanocomposites have been prepared using different concentrations (1-5 wt%) of graphene oxide (GO) nanoparticles through mechanical mixing and compression molding. The surface morphology of prepared fluoroelastomer/GO nanocomposites has been studied by scanning electron microscopy (SEM). The mechanical properties of fluoroelastomer nanocomposites show increase in hardness, tensile strength, modulus, toughness and decrease in elongation at break with the increasing of GO’s concentration. This can be attributed towards excellent distribution of GO nanoparticles in the fluoroelastomer matrix. The effect of GO nanoparticle concentration on rheological properties of fluoroelastomer nanocomposites like: loss factor, storage modulus, loss modulus and complex viscosity have been studied as a function of temperature (5-100°C) and at different frequency 1, 10, and 100 Hz. The non-linear relationship between storage and loss moduli have been observed through Cole-Cole plots of fluoroelastomer/GO nanocomposites. The linear relationship of loss factor and storage modulus plots was explained on the basis of fluoroelastomer/GO interactions. The visco-elastic properties show increase in loss modulus, storage modulus, complex viscosity and decrease in loss factor with GO concentration, which can be attributed towards better fluoroelastomer-nanoparticle interactions.

Funder

Council of Scientific and Industrial Research, India

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3