Compatibilization of silica-filled natural rubber compounds by combined effects of functionalized low molecular weight rubber and silane

Author:

Saramolee Prachid1,Sahakaro Kannika1,Lopattananon Natinee1,Dierkes Wilma K2,Noordermeer Jacques WM2

Affiliation:

1. Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, Thailand

2. Department of Elastomer Technology and Engineering, Faculty of Engineering Technology, University of Twente, Enschede, the Netherlands

Abstract

Epoxidized low molecular weight natural rubber (ELMWNR) with 28 mol% epoxide groups and weight average molecular weight of 49,000 g mol−1 was prepared by oxidative degradation of epoxidized natural rubber (NR) using periodic acid in the latex state. ELMWNR-28 was used at 10 parts per hundred parts of rubber (phr) loading in combination with bis-(triethoxysilylpropyl) tetrasulfide (TESPT) as the silane coupling agent in the range of 0–4.5 phr in silica-reinforced NR compounds. The use of TESPT in combination with ELMWNR-28 gives lower mixing torques and compound viscosities compared with the use of TESPT alone and the system without any compatibilizer. The bound rubber content, modulus, and tensile strength of the compounds with only TESPT strongly depend on the TESPT loading. The use of ELMWNR-28 as a compatibilizer clearly improves such properties compared with the non-compatibilized systems. By adding TESPT into the compound with ELMWNR-28, the properties further improve with increasing TESPT loading. The combined effect of ELMWNR-28 at 10 phr with a small amount of TESPT at 1.5 phr results in compounds with superior processability (i.e. low Mooney viscosity and Payne effect), and only slightly lower modulus and reinforcement index (M300/M100) compared with the use of the optimum content of TESPT. This compatibilizer/TESPT combination has the environmental benefits that the ELMWNR is a naturally based product, and that the reduced amount of TESPT silane coupling agent emits a greatly reduced amount of ethanol during processing.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3