Leather-like composite materials prepared from natural rubber and two leather wastes: Wet blue leather and finished leather

Author:

Raksaksri Laksamon12ORCID,Phunpeng Veena3ORCID

Affiliation:

1. School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima, Postal code 30000, Thailand.

2. Research Center for Biocomposite Materials for Medical Industry and Agriculture and Food Industry, Suranaree University of Technology, Nakhon Ratchasima, Postal code 30000, Thailand.

3. School of Mechanical Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima, Postal code 30000, Thailand.

Abstract

In this study, leather-like composites were prepared from natural rubber (NR) and two different types of leather waste, namely wet blue leather (WBL) and finished leather (FL). Compounding was carried out on an internal mixer and two-roll mill, and curing was further conducted on a compression molding machine. The effects of leather type and content from 20 to 80 parts per hundred of rubber (phr) on cure characteristics, mechanical properties (hardness and tensile properties) and thermal stability of the as-prepared composites were investigated and compared with those of the unfilled NR compound. The curing rate and crosslink density of all composites were found to be lower than those of the unfilled NR. All WBL-filled NR composites exhibited higher tensile strength than the unfilled NR, while all FL-filled NR composites had lower values. Meanwhile, the hardness and modulus at 200% strain of all composites were increased with increasing leather waste contents compared to those of the unfilled NR. The composites containing low WBL loadings (20 and 40 phr) demonstrated higher elongation at break over the unfilled NR, while the other composites exhibited lower values. Besides, the thermal stability of all NR composites was deteriorated, but still largely retained.

Funder

Thailand Science Research and Innovation

National Science, Research and Innovation Fund

Suranaree University of Technology

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3