Microscopic analysis on dimensional capability of fused filament fabrication three-dimensional printing process

Author:

Al Rashid Ans1ORCID,Abdul Qadir Sikandar2,Koç Muammer1

Affiliation:

1. Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar

2. Division of Engineering Management & Decision Sciences, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar

Abstract

Fused Filament Fabrication (FFF) has been the most widely used three-dimensional printing (3DP) technology due to its cost-effectiveness, easy application, and material readiness. FFF, to date, has been used to fabricate polymer components for rapid prototyping and increasingly for some end-user applications. Thus, there is a pressing need to optimize 3DP process parameters for FFF materials to achieve higher dimensional accuracy, especially in functional components for final use applications. Therefore, to ensure desired geometries with reasonable accuracy, precise measurements are required to validate the FFF process’s dimensional capability under different process conditions. This study presents the dimensional measurement and statistical analysis to evaluate the effect of printing materials, speed, and layer heights on dimensional accuracy and repeatability of the commercial FFF process. A benchmark part model was designed with different external and internal features commonly used in manufacturing processes. Taguchi’s design of experiments (DOE) was employed to obtain the experiments scheme, followed by the 3DP, dimensional measurement, and analysis of 3DP samples. Results revealed polylactic acid (PLA) material provided better dimensional control in most of the features. Higher printing speeds and layer heights were found optimum for external features/protrusions, whereas lower-to-medium speeds and layer heights were more appropriate for the fabrication of internal features.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3