Algorithm for sheet thickness measurement and its application to thermoformed PMMA sheet

Author:

Patil Jeet1ORCID,Vasavada Jitesh2,Mahajan Peeyush2,Mishra Sushil2

Affiliation:

1. Department of Mechanical Engineering, Shri Guru Gobind Singhji Institute of Engineering and Technology, Vishanupuri, Nanded, India

2. Department of Mechanical Engineering, IIT Bombay, Mumbai, India

Abstract

One of the evaluative criteria utilized to ascertain the quality of a thermoformed product is the ultimate thickness of the sheet achieved through the processing. In determining the visual performance of optical products such as aircraft canopy, windscreens, etc., thickness distribution is crucial. Consequently, precise thickness measurement is the most essential aspect of quality control. To measure thickness, a variety of mechanical and optical measurement systems, in addition to several manual systems, are available. The manual intervention restricts the measurement system to lesser measurements and simplifies the system to simple geometries. Furthermore, post-processing of the image or point data is necessary to obtain thickness distribution using an optical measurement system. However, manual intervention is exceptionally time-consuming and may result in inaccurate outcomes. As a result, the current investigation put forth an algorithm based on machine learning to measure the precise thickness distributions from point data obtained through the measuring system. The algorithm’s functionality is illustrated through the thermoforming of a PMMA hemispherical dome at various forming pressures. Point data for thickness measurements of the hemispherical domes were acquired using the Rapid-I system of measurement. Utilizing the proposed algorithm, the thickness distribution of the hemispherical domes was measured accurately and efficiently.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3