The effect of OMMT reinforcement and annealing treatment on mechanical and thermal properties of Polyurethane Copolymer nanocomposites

Author:

Albozahid Muayad1ORCID,Naji Haneen2,Alobad Zoalfokkar3,Saiani Alberto4

Affiliation:

1. Department of Materials Engineering, Faculty of Engineering, University of Kufa, Kufa, Iraq

2. Department of Chemical Engineering, Faculty of Engineering, University of Babylon, Babil, Iraq

3. Department of Polymers Engineering and Petrochemical Industries, Faculty of Materials Engineering, University of Babylon, Babil, Iraq

4. School of Natural Sciences, Department of Materials, University of Manchester, Manchester, UK

Abstract

This study focuses on a new fabrication of nanocomposite based on Polyurethane Copolymer (PUC) intercalated with organo-modified montmorillonite nanoparticles (OMMT), via an efficient combination of solution mixing and melt blending processes. The combination of solution mixing and melt interaction processes produced PUC/OMMT nanocomposites with enhanced properties. The OMMT filled PUC was characterised by TEM and tensile test. The effect of thermal treatment process was also studied due to subsequent microphase separation of PUC resulting from microdomain miscibility. TEM observation recognised a decent dispersion state of OMMT within PUC, owing to their exfoliated and intercalated structure. This morphology was greatly influenced by induced thermal treatment. The dynamic mechanical thermal analysis (DMTA) revealed that storage modulus and glass transition temperature of the nanocomposites increased with OMMT incorporation. The tensile modulus and tensile strength of nanocomposites showed an improvement with the addition of OMMT.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3