Evaluating the effect of environmental conditions on high compressive strain rates in unfilled and filled neoprene rubbers

Author:

Gkouti Elli1ORCID,Chaudhry Muhammad Salman1,Yenigun Burak1,Czekanski Aleksander1ORCID

Affiliation:

1. Department of Mechanical Engineering, Lassonde School of Engineering, York University, Toronto, ON, Canada

Abstract

Elastomers are known for their strain-rate-dependent properties not only to quasistatic but also to high strain rate deformations, where mechanical behavior is significantly affected by inertia. Concurrently, environmental changes, such as temperature and humidity variations, can impact their stress response to deformation. This study investigates the effects of material layers within neoprene samples on mitigating these environmental changes. While the presence of an intermediate layer proves effective against temperature and humidity influence, it fails to block the impact of increasing high strain rates. Moreover, the different humidity levels at room and elevated temperatures do not significantly alter the mechanical behavior of filled neoprene samples compared to pure neoprene. Notably, in unfilled neoprene, an increase in humidity levels, other than an absolutely dry environment, leads to a notable stress level rise at room temperature, while under elevated temperature conditions, there is a significant stress decrease with increasing humidity. However, neoprene filled with polyester/cotton or nylon displays resilience to diminishing mechanical behavior under various temperature and humidity regulations, indicating that the material layer within these samples effectively “protects” the rubbers from potential stress lapses observed in unfilled neoprene. While a high strain rate compression affects the behavior of the filled variants significantly, increasing humidity and temperature have minimal impact on their stress levels. These findings offer valuable insights into the dynamic responses of elastomers to environmental changes, highlighting the advantages of using filled rubbers in diverse applications.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3