Studies on Sugarcane Bagasse Fiber—Thermoplastics Composites

Author:

Youssef H.A.1,Ismail M.R.2,Ali M.A.M.2,Zahran A.H.2

Affiliation:

1. National Center for Radiation Research and Technology 29 P. O. Box, Nasr City, Cairo, Egypt,

2. National Center for Radiation Research and Technology 29 P. O. Box, Nasr City, Cairo, Egypt

Abstract

The influence of thermoplastic/bagasse fiber ratio, as well as electron beam irradiation on the physicomechanical properties of low-density polyethylene (LDPE) and high-density polyethylene (HDPE) composites has been investigated. The concentration of bagasse fibers ranges from 20 to 80 wt%. The results indicate that there is deterioration in the properties as fiber concentration increased; however, it becomes significant only beyond 50% (w/w) bagasse fibers in both LDPE and HDPE composites. Also, the data show that this decrease in the properties is more pronounced in HDPE rather than LDPE composites. It can be noticed that enhancing adhesion between fibers and thermoplastics can be achieved by irradiation of the thermoplastic phase prior to mixing at 10 up to 60 kGy; a maximum improvement in the properties is observed at 40 and 10 kGy for LDPE and HDPE, respectively. From the data it can be seen that the increase in the flexural properties is higher than 100%, while it does not exceed 65% for impact toughness. On the other hand, the reduction in water absorption is not more than 5.5%. Also, examining SEM micrographs reveals that there is some sort of adhesion between fibers and thermoplastics phases.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

Reference22 articles.

1. Flodin, P. and Zadorecki, P. (1986). Cellulose-Reinforced Polyesters, In: Salmen, L., de Ruyo, A., Seferis, J.C. and Stark, E.B. (eds), Composite Systems from Natural and Synthetic Polymer, pp. 59-83, Elsevier Science, Amsterdam.

2. Whiskers and short fiber technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3