Enhancement of tracking resistance of silicone rubber through charge dissipation and radical capture by fluorosilane-grafted iron oxide

Author:

Xie Chixin12ORCID,Zeng Xingrong1,Huang Hengchao2,Jiang Jinbo2,Chen Wanjuan3ORCID

Affiliation:

1. School of Materials Science and Engineering, South China University of Technology, Guangzhou, P. R. China

2. Guangzhou Baiyun Chemical Industry Co., Ltd., Guangzhou, P. R. China

3. College of Materials Science and Energy Engineering, Foshan University, Foshan, P.R. China

Abstract

Fluorosilane-grafted iron oxide (F-Fe2O3) was prepared via surface grafting reaction between iron oxide and perfluorooctyltriethoxysilane. The effect of F-Fe2O3 on the tracking resistance (TR) of addition-cured liquid silicone rubber (ALSR) was investigated by the inclined-plane test (IPT), surface potential decay test (SPDT), thermogravimetry (TGA), corona aging test and scanning electron microscopy (SEM). F-Fe2O3 delayed the occurrence of the intensive arc discharge and reduced the number of arc discharges. The corona resistance and TR of ALSR were effectively improved. ALSR/F-Fe2O3 with 0.15 phr F-Fe2O3 content passed the IPT at 4.5 kV, showing an erosion mass of 3.17%. The hydrophobicity and thermal stability of ALSR were also enhanced. The SPDT showed that F-Fe2O3 effectively dissipated charge. The results of thermal stability and corona resistance tests revealed that F-Fe2O3 could capture free radicals generated by the oxidation of methyl side groups of ALSR chains and thus inhibit the thermal degradation of ALSR during the arc discharge. Moreover, the charge dissipation by F-Fe2O3 could diminish the accumulation of charges in ALSR and reduce the damage of charges to the chains during arc discharge. Therefore, the TR of ALSR was enhanced.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3