Nonlinear vibration analysis of a membrane based on large deflection theory

Author:

Liu Xiang1,Cai Guo-ping1,Peng Fu-jun2,Zhang Hua2,Lv Liang-liang2

Affiliation:

1. Department of Engineering Mechanics, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, P. R. China

2. Shanghai Institute of Aerospace System Engineering, Shanghai, P. R. China

Abstract

This paper investigates nonlinear vibration of a simply supported rectangular membrane based on large deflection theory. Dynamic stress caused by transverse displacement of the membrane is considered in modeling the membrane. The assumed mode method and the nonlinear finite element method (FEM) are both used as discretization methods for the membrane. In the assumed mode method, an approximate analytical formula of the natural frequency is derived. In the nonlinear FEM, a three-node triangular membrane element is proposed. The difference between the membrane’s dynamical characteristics obtained by these two discretization methods is revealed. Simulation results indicate that natural frequency of the membrane will rise along with the increasing of the vibration amplitude of the membrane, and the natural frequency obtained by the nonlinear FEM is larger than that obtained by the assumed mode method. When the membrane vibration is small, the assumed mode method may achieve a reasonable result, but it may lead to a big error when the membrane vibration is large.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3