Structural analysis of the dynamic response of a shape memory alloy based damper

Author:

Thiebaud Frédéric1ORCID,Ben Zineb Tarak1

Affiliation:

1. CNRS, Arts et Métiers ParisTech, Université de Lorraine, Nancy, France

Abstract

Shape memory alloys (SMAs) are promising candidates for use in sensors, actuators, or passive dampers. This paper investigates the dynamic response of a superelastic NiTi holed disk to assess its damping performance relative to frequency and temperature for SMA-based damper applications. This study involved several key steps. Initially, the superelastic behavior of the SMA was experimentally characterized through tensile tests. This testing campaign provided the required data to identify material parameters of a thermomechanical constitutive model, already implemented in the finite element code Abaqus. Using the identified parameters, a finite element based structural analysis was conducted to predict the disk’s operational range, ensuring it remained within the superelastic domain without incurring potential damage. Following this static analysis, a dynamic mechanical analysis (DMA) was performed on the disk. By employing a complex stiffness approach, we further examined the disk’s damping effects. This dynamic method enabled a detailed description of the apparent stiffness and damping characteristics based on solicitation frequency, test temperature, vibration amplitude, and a predefined static displacement. The results indicated a clearly predominant structural effect over the phase transformation effect, despite the disk’s substantial damping potential.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3