Three-dimensional vibration of rotating functionally graded beams

Author:

Fang Jianshi12,Zhou Ding34,Dong Yun4

Affiliation:

1. School of Sciences, Nanjing University of Science and Technology, PR China

2. School of Materials Engineering, Nanjing Institute of Technology, PR China

3. College of Civil Engineering, Nanjing Tech University, PR China

4. Faculty of Architecture and Civil Engineering, Huaiyin Institute of Technology, PR China

Abstract

The three-dimensional free vibration and time response of rotating functionally graded (FG) cantilevered beams are studied. Material properties of functionally graded beams are assumed to change gradually through both the width and the thickness in power-law form. The second-kind Lagrange’s equations are used in conjunction with the Ritz method to derive the comprehensive coupling dynamic equations for the axial, chordwise, and flapwise motions. The trial functions of deformations are taken as the products of the Chebyshev polynomials and the corresponding boundary functions. Nonlinear coupling deformations are considered to capture the dynamic stiffening effect due to the rotating motion. The influences of the material gradient index and rotational speed on modal characteristics are investigated by the state space method. The eigenvalue loci veering phenomena with modal conversions are exhibited. The time responses indicate that the deformations of rotating functionally graded beams are greatly affected by the material gradient index. It is shown that for large deformation problems, using Chebyshev polynomials is more efficient in computing precision and robustness than using other polynomials.

Funder

the National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3