Robust dynamic surface control of series elastic actuators based on reduced-order extended state observer

Author:

Yin Changwei12ORCID,Du Fuxin123,Zhang Yang12ORCID,Chen Chao4,Song Rui35,Li Yibin35

Affiliation:

1. School of Mechanical Engineering, Shandong University, Jinan, China

2. Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, Shandong University, Jinan, China

3. Engineering Research Center of Intelligent Unmanned System, Ministry of Education, Shandong University, Jinan, China

4. School of Rail Transportation, Shandong Jiaotong University, Jinan, China

5. School of Control Science and Engineering, Shandong University, Jinan, China

Abstract

The compliance of series elastic actuators (SEAs) is significant for ensuring safe human–machine interaction. However, in practical applications, the SEA is inevitably encountered with unknown disturbances, such as parameter uncertainties, unmodeled dynamics, and environmental interferences. In this paper, a robust dynamic surface control scheme is presented to address the high-precision trajectory tracking problem of the SEA. Firstly, a reduced-order extended state observer (RESO) with only link-side position measurements is designed to estimate the unknown lumped disturbance and unmeasurable system states. Based on the estimated values from the RESO, a robust dynamic surface controller is proposed for the trajectory tracking of the SEA. Additionally, the finite-time filter is introduced to overcome the “explosion of complexity” in the backstepping controller, and the filtering error in the dynamic surface controller is reduced compared with the conventional first- and second-order filters. The stability of the closed-loop system is guaranteed by the Lyapunov theory. Finally, the effectiveness and superiority of the proposed control algorithm are verified through simulations and experiments.

Funder

Excellent Research Project of Shandong University

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3