Affiliation:
1. School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai, China
2. Sino-French International Joint Laboratory, School of Automatic Control and Signal Processing (LaFCAS), School Automation, Nanjing University of Science and Technology, Nanjing, China
Abstract
This paper proposes a new adaptive fuzzy logic control for nonlinear car active suspension systems based on the time delay (TDAFLC). The proposed method comprises three terms: First, time-delay estimation (TDE) is used as an ultra-local model to estimate the active suspension system nonlinearities and unknown dynamics. Second, a desired dynamics injection part. Third, the adaptive fuzzy logic control is used as an extra input to reduce the effect of the TDE error. The adaptive fuzzy logic control is designed on a new sliding surface to achieve the desired error dynamics. The benefits of the TDAFLC controller are its simple structure and ease of regulation. In addition, the theoretical investigation of system stability, convergence speed, and control accuracy are demonstrated. Finally, using a co-simulation platform, the validation process compares TDAFLC to TDC, PID, and the conventional passive system for a two-degree-of-freedom quarter car active suspension system under different road excitations.