Segmental vibration transmissibility of seated occupant from lumped parameter models

Author:

Alphin Masilamany Santha,Sankaranarayanasamy Krishnaswamy,Sivapirakasam Suthangathan Paramashivan1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology, Tiruchirapalli, India

Abstract

One of the important parameters for the comfort of a seated occupant of a vehicle is the dynamic parameter. The effects of vibration depend on biomechanical characteristics, transmissibility (TR) and apparent mass. The range of input vibration at the seat and TR at the driving frequency will decide the magnitude of the displacement at any point of the human occupant. The most preferred form of biomechanical model for unidirectional whole body vibration is the lumped parameter model. Lumped parameter models are formulated by number of masses depending on the number of degrees-of-freedom (d.f.). The objective of this work is to study the vibration TR by developing the equations of motion (EOM) for different d.f. models for the seated occupant. Then the generated equations of motion for lumped parameter models are solved using the frequency domain technique. In this paper two, four, seven and 11 d.f. models are considered. The TR values are determined by solving the derived parameters using the MATLAB program. The maximum seats to head TR in the case of two, four, seven and 11 d.f. are obtained at the frequency of 2 Hz, 2.5 Hz, 3.15 Hz, and 4 Hz respectively. The TR obtained from models is compared with real time experimental results. The comparison shows a better fit for the TR obtained from the four and seven d.f. models. There is a wide deviation from the TR observed with two and 11 degrees of models when compared with experimental results of the past literature.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3