Advanced parameter analysis for damper influence on ride dynamics

Author:

Bedük M Durukan1,Çalışkan Kemal1,Henze Roman1,Küçükay Ferit1

Affiliation:

1. Institute of Automotive Engineering, TU Braunschweig, Germany

Abstract

The conflicting objectives related to damping characteristics of vehicle suspensions promote further development of new damper concepts. The effort is no longer limited to finding the optimal damper velocity–force characteristics for a vehicle suspension system. Besides this basic design parameter, the amplitude- and frequency-dependent characteristics of dampers are also taken into consideration. The first step in adjustment of the velocity, displacement, and frequency-dependent damper characteristics is to understand the effect of these characteristics on the dynamics of the vehicle. Therefore, in this study, the interaction between the damper characteristics and vehicle ride response is analyzed by using a detailed mathematical damper model together with a verified full vehicle simulation model. A semi-parametric detailed damper model is first verified through physical testing of different dampers and then it is fully parameterized and implemented inside the full vehicle simulation model. A parameter variation analysis is performed to show the effect of the different damper characteristics on vehicle ride comfort.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3