Fault detection in rotor system by discrete wavelet neural network algorithm

Author:

Babu Rao K1ORCID,Mallikarjuna Reddy D1ORCID

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India

Abstract

This study identifies a method for detection of irregularities such as open cracks or grooves on a rotating stepped shaft with multiple discs, based on the wavelet transforms. Cracks are represented as reduction in diameter of shaft (groove) with small width. Single as well as multiple grooves are considered on stepped shaft at locations of stress concentration. Translational or rotational response curves/mode shapes are extracted from finite element analysis of rotors with and without grooves. Discrete and continuous 1D wavelet transforms are applied on resultant response curve or mode shapes. The results show that rotational response curves or mode shapes are more sensitive to shaft cracks and key contributors to identify the location of cracks than translation response curves or mode shapes. Discrete wavelet transforms are accurate enough to locate the groove of smaller size. Effectiveness of detection by wavelets transforms is analysed for single as well as multiple grooves with increase in groove depth. Increase in groove depth can be quantified by increase in wavelet coefficient, and it can be an indicator. White Gaussian noise with low signal-to-noise ratio is added to response curves and analysed for crack location identification. Intelligent techniques such as artificial neural networks are used to quantify the location and depth of crack. Discrete wavelet transforms coefficients are provided as input to the neural network. Feed forward artificial neural networks are trained with Levenberg–Marquardt back propagation algorithm. Trained networks are able to quantify the crack location and depth accurately.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3