An estimator algorithm for the rotation time of magnetization vector in nuclear magnetic resonance for imaging (NMRI)

Author:

Barbaraci Gabriele1ORCID,D'Ippolito Filippo2

Affiliation:

1. Department of Dynamical Systems, Barbaraci Engineering Inc., Vaughan, Canada

2. Department of Control Systems Engineering, Università degli Studi di Palermo, Italy

Abstract

The purpose of this paper is to propose a useful method to investigate the rotation time of the magnetization vector in the nuclear magnetic resonance for imaging (NMRI) system. The ninety degrees rotation of the magnetization vector is the first step in order to establish the free induction decay that radiates electromagnetic energy inside the NMRI chamber. The estimator involved in this research is called Luenberger's observer which is a state estimator of a dynamical system. The Bloch's equation is a dynamical system characterized by a radio frequency (RF) impulse located inside the dynamic matrix, which means the system is not linear. The observer algorithm involved in this paper estimates each vector's component of the Bloch's dynamic model characterized by the magnetizations along the x, y and z direction which are axles located inside the NMRI chamber where the z axis has the same direction of the uniform magnetic field. The result is compared with one shown in the literature which results coincident with estimation. The estimator has been calculated in a closed form except in some cases where the symbolic expression makes the mathematical characterized by a high computational burden. The expression of the solutions is calculated by using the Heaviside expansion once the poles of the dynamical systems characterizing the Bloch's differential equations system are known. A set of simulations is carried out by using different configurations of the observer that have been calculated formerly without considering the RF pulse and subsequently with its introduction showing how the Bloch's dynamical system is affected by the skew symmetric matrix which is typical of a gyroscopic dynamical system. This likelihood produces a time estimation of the rotation vector which is slightly higher than the estimated value offered in the literature.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3