Intelligent rolling bearing compound fault diagnosis based on frequency-domain Gramian angular field and convolutional neural networks with imbalanced data

Author:

Zhang Faye1ORCID,Yao Peng1,Geng Xiangyi2,Mu Lin3,Paitekul Phanasindh4,Viyanit Ekkarut5,Jiang Mingshun1,Jia Lei1

Affiliation:

1. School of Control Science and Engineering, Shandong University, Jinan, PR China

2. The Public (Innovation) Experimental Teaching Center, Shandong University, Qingdao, China

3. The Engineering Training Center, Shandong University, Jinan, China

4. Thailand Institute of Scientific and Technology Research, Pathum Thani, Thailand

5. National Science and Technology Development Agency, Khlong Nueng, Thailand

Abstract

The effective fault feature extraction is the core of rolling bearing fault diagnosis. However, rolling bearings usually operate in normal state and fault duration is very short, which will cause imbalance in fault diagnosis data, thus leading to difficulty in fault feature extraction and low diagnosis accuracy. Meanwhile, mutual interference between multiple fault responses will also lead to poor diagnosis performance. To solve these issues, a novel compound fault diagnosis method with imbalanced data based on frequency-domain Gramian angular field (FGAF) and convolutional neural networks optimized by instance normalization and efficient channel attention (IECNN) is proposed. Firstly, FGAF is adopted to map frequency-domain features of fault signals to the polar coordinate to obtain 2D FGAF feature spectrum. Secondly, an instance normalization module is established to reduce internal covariant shift caused by data distribution discrepancy and improve generalization ability. An efficient channel attention module is constructed to further excavate fault features and improve anti-interference ability. Finally, experiments are conducted under imbalanced dataset and imbalance intensified dataset, and the average accuracy of 99.91% and 99.92% were obtained, respectively, which shows the proposed method has better resistance to data imbalance.

Funder

Fundamental Research Funds of Shandong University

Key Research and Development Plan of Shandong Province

National Natural Science Foundation of China

the National Key Research and Development Project

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3