Nonlinear forced vibrations of a slightly curved pipe conveying supercritical fluid

Author:

Ye Si-Qin1ORCID,Ding Hu1ORCID,Wei Sha1ORCID,Ji Jin-Chen2ORCID,Chen Li-Qun1ORCID

Affiliation:

1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, School of Mechanics and Engineering Science, Shanghai University, Shanghai, China

2. School of Mechanical and Mechatronic Engineering, FEIT, University of Technology Sydney, Sydney, NSW, Australia

Abstract

Vibrations of pipes caused by axially flowing fluids are very common in engineering applications. Due to material imperfections, guide misalignment, and improper supports, the installed pipes are prone to the initial curvature. Though small, the initial curvature can significantly change the dynamic characteristics of the slightly curved pipe system. This study investigates the non-linear forced vibration of a slightly curved pipe conveying supercritical fluid around the curved equilibrium, with the emphasis on amplitude–frequency responses around two asymmetric non-trivial equilibrium configurations. The governing equations for the forced vibration of a slightly curved pipe conveying supercritical fluids are derived using the generalized Hamilton principle. Then, the equations of motion are discretized into a set of coupled ordinary differential equations via the Galerkin truncation method and solved by the harmonic balance method combined with the pseudo-arc length technique. The approximate analytical results are verified by the numerical integration results. The obtained results demonstrate that the initial curvature has a significant effect on the dynamic characteristics of pipes conveying supercritical fluids, and can lead to significant differences in the dynamic response of the pipe system near different equilibrium configurations.

Funder

National Natural Science Foundation of China

State Key Laboratory of Mechanical System and Vibration

China National Funds for Distinguished Young Scientists

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3