Robustly stabilizing proportional integral controller for uncertain system under computational delay

Author:

Saxena Sahaj1ORCID,Hote Yogesh V2

Affiliation:

1. Electrical and Instrumentation Engineering Department, Thapar Institute of Engineering and Technology, India

2. Department of Electrical Engineering, Indian Institute of Technology Roorkee, India

Abstract

In a feedback control loop, when there exists a delay in processing the control signal (often called computational delay), it is difficult to stabilize the system, particularly when the system exhibits uncertainty. To solve this problem, we proposed a new robust proportional integral control strategy for a class of uncertain systems exhibiting parametric uncertainty. A two-stage scheme is proposed in which the first stage identifies the worst plant that has the highest chance of facing instability; and in the second stage, based on the worst plant, the tuning parameters of the proportional integral controller are determined using the stability boundary locus approach under the desired closed-loop specifications of gain and phase margins. The efficiency of the proposed scheme is verified for servo and regulatory control problems.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3