Prediction of shear strain induced by blasting waves in surface structures based on coupled frequency, velocity, and displacement effects

Author:

Nateghi Reza1ORCID,Goshtasbi Kamran1ORCID,Nejati Hamid Reza1

Affiliation:

1. Department of Mining Engineering, Faculty of Engineering, Tarbiat Modares University, Iran

Abstract

Blasting ground vibration is an undesirable side effect of using explosives to fragment rocks. There is not any universally accepted standard to determine limitations of blast vibrations; however, velocity is the most commonly used method to measure ground vibrations. Because the structural response is highly frequency dependent, the frequency content is an essential characteristic of blast-induced shock waves along with the velocity. The magnitude of blast-induced displacement or velocity and their relative stress and strain are directly related to the quantity of charge, distance from blasting point, and geological conditions. These effects were not considered in the response spectrum theory of structures. This article tries to propose a new procedure to predict the shear displacement and relative strain for optimization of blasting patterns before the explosion. It can be accomplished by representing the effects of both velocity and frequency on the horizontal displacement of the structures based on measurements undertaken by the authors in two different rock formations. In this study, collected data were analyzed statistically to determine the coupled effects of dominant frequency, peak particle velocity, and peak particle displacement to propose a simple procedure for predicting the range of blast-induced displacement and related strain in structures.

Funder

Tarbiat Modares University

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3