Intelligent proportional-integral (iPI) control of a single link flexible joint manipulator

Author:

Agee John T1,Kizir Selcuk2,Bingul Zafer2

Affiliation:

1. Department of Electrical Engineering, Tshwane University of Technology, Pretoria, South Africa

2. Department of Mechatronics Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, Turkey

Abstract

This paper presents the design, stability analysis and experimental validation of a computationally non-intensive, model-free, intelligent proportional-integral (iPI) controller for flexible joint manipulators. In order to show the performance of the iPI controller, it is compared with classical proportional-integral and proportional-integral-derivative controllers. Based on this comparison, the iPI-controlled system achieved a better than 60% tracking accuracy for both kane trajectory and sine input tracking. The iPI controller also significantly reduced transient swings in the flexible joint of the manipulator, when tracking a train of pulses. Moreover, the iPI controlled system successfully eliminated both disturbances and noise effects from the dynamics of the manipulator.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-agent fuzzy Q-learning-based PEM fuel cell air-feed system control;International Journal of Hydrogen Energy;2024-07

2. Point-to-point virtual model control of a flexible joint robotic manipulator using trajectories of motion;Transactions of the Institute of Measurement and Control;2024-06-19

3. Model free sliding mode control for serial robot manipulator: rigid and elastic joint robot;PRZEGLĄD ELEKTROTECHNICZNY;2024-05-14

4. Application of Q-learning in stabilization of multicarrier energy systems;Applications of Deep Machine Learning in Future Energy Systems;2024

5. Digital twins−assisted design of next-generation DC microgrid;Applications of Deep Machine Learning in Future Energy Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3