Design Optimization of Quarter-car Models with Passive and Semi-active Suspensions under Random Road Excitation

Author:

Verros G.1,Natsiavas S.2,Papadimitriou C.3

Affiliation:

1. Department of Mechanical Engineering, Aristotle University, 54 124 Thessaloniki, Greece

2. Department of Mechanical Engineering, Aristotle University, 54 124 Thessaloniki, Greece,

3. Department of Mechanical and Industrial Engineering, University of Thessaly, 38 334 Volos, Greece

Abstract

A methodology is presented for optimizing the suspension damping and stiffness parameters of nonlinear quarter-car models subjected to random road excitation. The investigation starts with car models involving passive damping with constant or dual-rate characteristics. Then, we also examine car models where the damping coefficient of the suspension is selected so that the resulting system approximates the performance of an active suspension system with sky-hook damping. For the models with semi-active or passive dual-rate dampers, the value of the equivalent suspension damping coefficient is a function of the relative velocity of the sprung mass with respect to the wheel subsystem. As a consequence, the resulting equations of motion are strongly nonlinear. For these models, appropriate methodologies are first employed for obtaining the second moment characteristics of motions resulting from roads with a random profile. This information is next utilized in the definition of a vehicle performance index, which is optimized to yield representative numerical results for the most important suspension parameters. Special attention is paid to investigating the effect of road quality as well as on examining effects related to wheel hop. Finally, a critical comparison is performed between the results obtained for vehicles with passive linear or bilinear suspension dampers and those obtained for cars with semi-active shock absorbers.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 165 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3