A neurofuzzy controller for full vehicle active suspension systems

Author:

Aldair AA1,Wang WJ1

Affiliation:

1. School of Engineering and Design, University of Sussex, Falmer, UK

Abstract

The main objectives of designing the controller for vehicle suspension systems are to reduce the discomfort sensed by passengers that arises from road roughness and to increase the road handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as many control objectives as possible. This paper deals with an artificial intelligent neurofuzzy (NF) technique to design a robust controller. The advantage of this controller is that it can handle the nonlinearities faster than other conventional controllers. The approach of the proposed controller is to minimize the vibration on each corner of the vehicle by supplying control forces to the suspension system when travelling on a rough road. The other purpose of using the NF controller for the vehicle model is to reduce the body inclinations that are made during intensive maneuvers, including braking and cornering. A full vehicle nonlinear active suspension system is introduced and tested. The robustness of the proposed controller is being assessed by comparison with an optimal proportional-integral-derivative (PID) controller. The results show that the intelligent NF controller has improved the dynamic response measured by decreasing the cost function.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3