An evaluation of the influence of Eigensystem Realization Algorithm settings on multiple input multiple output system identification

Author:

Soares Dirceu12ORCID,Serpa Alberto Luiz1ORCID

Affiliation:

1. University of Campinas - UNICAMP, Brazil

2. Federal Institute of Espirito Santo - IFES, Brazil

Abstract

One characteristic of the Eigensystem Realization Algorithm method for system identification concerns about the difficulty of finding more appropriate parameters to run the algorithm. One of this work’s purposes is to tackle the cumbersome task of achieving the ideal algorithm settings, providing additional knowledge about algorithm parameters’ influence, and searching to improve results with quicker settings of the algorithm’s parameters, especially for Multiple Input Multiple Output (MIMO) systems. The application of a Fit Rate indicator to evaluate the identified system arises as a novelty in the Eigensystem Realization Algorithm applications, aiming to assess the system identification performance and drive the algorithm to better adjustments. Another objective of this article regards the application of a Pseudo Random Binary Sequence as excitation signals, which has not been used until now with the Eigensystem Realization Algorithm, despite being successfully applied in the system identification process. The proposed approach is verified and analyzed with numerical simulations for a mass–spring–damper model of 5 degrees of freedom. The results reported in time response analysis and frequency response analysis allow us to realize the effect of settings accordingly for the system identification improvement. The results analysis was extended to simulate and compare the Pseudo Random Binary Sequence with Gaussian white noise excitation, and the system was also submitted to the presence of measurement noise.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3