Innovative adaptive viscous damper to improve seismic control of structures

Author:

Javadinasab Hormozabad S1ORCID,Zahrai SM1

Affiliation:

1. School of Civil Engineering, the University of Tehran, Iran

Abstract

In this paper, a new adaptive viscous damper (AVD) is proposed and required equations are developed to describe its mechanical behavior. As opposed to conventional adaptive devices, the proposed damper is capable of adapting its own mechanical properties without any need for other devices such as sensors, processing unit, actuators, energy supplies, and wired or wireless connections. Eliminating such equipment not only reduces costs, but also removes related time lag and improves the efficiency of the control system. The proposed AVD includes a cylinder filled with viscous fluid and a piston with a nozzle at its head. The passing area of the nozzle is variable and as a result, the device can cover a range of damping coefficients. For non-extreme excitations, the damping coefficient is relatively small and consequently the damping force is reduced. Conversely, when extreme movements occur, the nozzle contracts a bit and generates relatively large control forces in order to protect the main structure efficiently. The mechanical model of the AVD is created in OpenSees and the damper is implemented in a two-story building example subjected to different earthquake records. The results show that compared to a typical viscous device, the proposed AVD can reduce the mean values of displacement, acceleration, and base shear by up to 52.5, 62.9, and 44.4% and increase the energy dissipation by up to 94.3% for extreme cases. Moreover, for non-extreme cases, the AVD shows a more flexible behavior and reduces the unfavorable damping forces.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3