High-voltage synthetic inductor for vibration damping in resonant piezoelectric shunt

Author:

Dekemele Kevin1ORCID,Van Torre Patrick2,Loccufier Mia1

Affiliation:

1. Department of Electromechanical, Systems and Metal Engineering, Ghent University, Belgium

2. Department of Information Technology, Ghent University, Belgium

Abstract

Resonant piezoelectric shunts are a well-established way to reduce vibrations of mechanical systems suffering from resonant condition. The vibration energy is transferred to the electrical domain through the bonded piezoelectric material where it is dissipated in the shunt. Typically, electrical and mechanical resonance frequencies are several orders apart. As such, finding a suitable high inductance component for the resonant shunt is not feasible. Therefore, these high inductance values are mimicked through synthetic impedances, consisting of operational amplifiers and passive components. A downside of these synthetic impedances is that standard operational amplifiers can only handle up to 30 V peak to peak and the state-of-the-art amplifiers up to 100 Vpp. However, as mechanical structures tend to become lighter and more flexible, the order induced voltages over the piezoelectric material electrode voltages increase above these limitations. In this research, a high-voltage synthetic inductor is proposed and built by combining the bridge amplifier configuration and the output voltage boost configuration around a single operational amplifier gyrator circuit, effectively quadrupling the range of the synthetic inductor to 400 Vpp. The impedance of the circuit over a frequency range is numerically and experimentally investigated. The synthetic inductor is then connected to a piezoelectric material bonded to a cantilever beam. Numerical and experimental investigation confirms the high-voltage operation of the implemented circuit and its suitability as a vibration damping circuit.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3