Integration of acoustic compliance and noise mitigation in path planning for drones in human–robot collaborative environments

Author:

Adlakha Revant1ORCID,Liu Wansong1ORCID,Chowdhury Souma1ORCID,Zheng Minghui1ORCID,Nouh Mostafa1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University at Buffalo (SUNY), Buffalo, NY, USA

Abstract

This work presents a framework aimed at mitigating adverse effects of high-amplitude drone noise ranging from hearing loss to reduced productivity in human–robot collaborative environments by infusing acoustic awareness in a path planning algorithm without imposing any additional design layers or hardware to an operational drone. Following a detailed outline of the proposed approach, it is shown that a significant reduction of noise levels perceived by human workers at noise-sensitive locations is realized via a path planner which generates optimal paths ranging from quietest to shortest paths. The approach is then augmented with a path-correction mechanism which accounts for noise exposure duration to ensure the aforementioned optimal paths are compliant with a given industrial/environmental standard. The correction mechanism enforces an adjustment of subsets of the planned paths inside quiet zones designated around noise-sensitive locations. The presented concepts were verified using numerical simulations conducted for a 2-dimensional rasterized obstacle field followed by a statistical design of experiments. The proposed framework is highly versatile and integrable with widely used industrial path planners, rendering it a highly valuable tool for noisy collaborative workplaces.

Funder

Sustainable Manufacturing and Advanced Robotic Technologies

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An audio‐based risky flight detection framework for quadrotors;IET Cyber-Systems and Robotics;2024-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3