The role of evanescent modes in global-local analysis of ultrasonic guided waves in plates with varying local zone-scatterer relations

Author:

Spada Antonino1ORCID,Zhang Mingyue2,Lanza di Scalea Francesco3,Capriotti Margherita2

Affiliation:

1. Department of Engineering, University of Palermo, Palermo, Italy

2. Aerospace Engineering Department, San Diego State University, San Diego, CA, USA

3. Experimental Mechanics & NDE Laboratory, Department of Structural Engineering, University of California San Diego, La Jolla, CA, USA

Abstract

In order to provide a reliable and robust SHM performance, Ultrasonic Guided Waves (UGWs) need to be analyzed and understood. Numerical modeling of UGW propagation and scattering by hybrid methods offers the possibility of simulating UGW interaction with waveguides of arbitrary cross-sections and discontinuities. Maximizing the accuracy of such methods is important to perform quantitative SHM, while maintaining minimum computational cost. This work investigates the role of evanescent modes in the numerical analysis of UGWs in aluminum and composite plates with defects, by the hybrid Global-Local method. The complex solutions to the UGW eigenvalue problem are found and the scattering spectra for A0 and S0 incident modes are calculated. The accuracy of the numerical solution is then studied by computing the error in terms of energy balance. Parametric studies with respect to the local zone size, defect dimensions and shape are conducted including and excluding evanescent modes in the analysis. Considerations are provided to obtain a solution with error no greater than 5%, in terms of varying local zone – scatterer relations within plate waveguides.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3